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Abstract. We show that by adding supersymmetry breaking soft terms to N = 4 SYM, the 
E8 gauge group can be spontaneously broken to SO,,,, with the emergence of 4 conventional 
light generations of 16 plus mirror particles. However this is only achieved after fine tuning, 
with further tuning required if a Higgs sector is to appear at low energies. 

1. Introduction 

Recently it has been shown [ 11 that using a coset space dimensional reduction scheme 
on N = 1 super Yang-Mills (SYM) in d = 10, one could break both supersymmetry and 
the internal gauge group. When this group is taken to be E*, one obtains a semi-realistic 
grand unification theory involving four massless generations (and ‘mirror’ generations) 

In this paper we present the results of an attempt to obtain similar results using 
N = 4 SYM [2] in d = 4, with the E8 gauge group. The scalar potential of this theory 
has flat directions-and moreover all the vacuum states are supersymmetric and thus 
degenerate among each other. One might hope that quantum corrections to the effective 
scalar potential would remove such ambiguities; however it has been shown that this 
is not possible in perturbation theory [5]. 

To remedy this situation we add to the N = 4 Lagrangian various dimensions 3 
soft terms [3,4] that explicitly break all four supersymmetries. One may then envisage 
constraining the parameters associated with such terms to single out the desired gauge 
breaking. It is well known [6] that N = 4 SYM has the property that it is finite to all 
orders in perturbation theory; the soft terms we add to the theory [3,4] are all the 
dimensions 3 insertions that preserve this property. 

In fact such N = 4 theories are members of a class of finite N = 2 theories [7,8]. 
Although we know of no fundamental reason why these should be chosen above merely 
renormalisable field theories as candidates for grand unification, the Yukawa couplings 
of the former are very much more constrained than the latter, and this would appear 
more appealing. 

It will turn out that the scale of E8 and subsequent gauge breaking depend on the 
soft parameters-so that immediately in this scenario we have supersymmetry breaking 
at a high energy (2 1015GeV). This seems less attractive than the usual N =  1 
phenomenological models (e.g. [9]) where supersymmetry is broken around M,. Such 
models solve the so-called ‘technical hierarchy problem’-that of maintaining M ,  << 
lO”GeV through quantum corrections, in a very natural way. However, there are 
models where the scale of supersymmetry breaking is of the order of 10” GeV, which 
then feeds down to the standard model, at O(M,). The reason why the scale of 
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supersymmetry breaking, in our case, is so large is because the explicit SUSY breaking 
terms are also responsible for the breaking of the grand unified group, E*. 

Overlooking these difficulties for the moment, we will give an example of a chain 
of breaking involving the higher exceptional groups: 

E g +  ET+ E6+ ES(-SOl,) 

and show that E, and SO,, surviving symmetries correspond to minima of the scalar 
potential. We do not claim that this particular sequence of breaking has corresponding 
minima that are lower than another sequence, since this would require a full 
classification of the possible vacua of the scalar potential, which for E8 would be 
difficult. But presumably, armed with such knowledge, one could arrange the soft 
terms so that a desired chain of breaking is rendered more favourable than any 
other-i.e. it corresponds to the lowest minima. In the following section we shall look 
closely at the details of tree level breaking in the scalar potential according to the 
above chain, and in particular at masses in the fermionic sector. Finally we make 
some conclusions as to the viability of the model in grand unified schemes. 

2. Details of tree level breaking in the scalar potential 

The Lagrangian (1) has a SU(2),x SU(2), global symmetry with a = 1-4 labelling the 
(2,2) representation and i , j  = 1-3 the (1,3) and ( 3 , l )  representations. 

We wish to add finiteness preserving soft terms to the Lagrangian (1). The authors 
of reference [3] have listed all the possible soft terms (dimensions3) that achieve 
this. They are combinations of the following in the notation of [3]: 

X a A b  mass terms + B’ ~ 2 - ~ 8 :  

(2) 

These terms add an extra nine arbitrary parameters to (1)-four spinor and six scalar 
masses satisfying STr(mass)’ = 0. 

Although we are putting in by hand the soft terms (2), one may conjecture that 
such terms could result from the spontaneous breaking of an N = 4 supergravity theory, 
coupled to N = 4 vector multiplets. In fact the generalised dimensional reduction [ 101 
of N = 1 supergravity plus SYM in d = 10 yields just such a scenario in d = 4 [ 113. Two 
mass parameters are found to appear, along with all the independent soft terms (2). 
It could be that this is an indication of the type of breaking terms that can appear, by 
starting with the d = 4  theory and employing a ‘hidden sector’ to break the local 
supersymmetry and then taking the k + 0 limit. It is well known that in the analogous 
case of N = 1 gauged matter coupled to N = 1 supergravity [ 121 dimensions 3 explicit 
supersymmetry breaking terms appear in the k + 0 limit. 

Although a particular combination of the terms in (2) yield N = 1 supersymmetric 
masses, we will not consider the addition of these to the theory; rather we will break 

A( A’ + B 2 )  A( A2 - 3 B2) cubic interactions. 
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all the degeneracies associated with surviving supersymmetries. The reason for this 
choice is that phenomenology rules out breaking of a grand unified gauge group in 
N = 4 SYM if, after breaking, there is at least one surviving supersymmetry (more of 
which will be said in the conclusion). 

The first real difficulty one encounters in the details of breaking Es (or any group 
G for that matter) in our model is the lack of a ‘hidden sector’ in which E8 could be 
broken, whilst protecting the low energy ‘observable’ sector of quarks and leptons 
from obtaining superheavy masses. This difficulty is a consequence of all the particles 
transforming under the same gauge group representations, because clearly one might 
expect that those Higgs bosons which give superheavy masses to ‘unwanted’ gauge 
bosons will also give superheavy masses to fermions having the same quantum numbers. 
But these are precisely the fermions whose mass we want to keep O(M,.,) since they 
correspond to the low energy sector. To give an example, if Es is broken down to a 
subgroup H say, then schematically we have 

248 + Ad” + (spinor rep)” + othersH. (3) 
In (3) ,  248 is the adjoint of E8, while the H label refers to the subgroup H. The gauge 
bosons in the spinor irreps of H are superheavy and since the fermions also transform 
under the 248, we might expect that only the masses of those in the Ad” representation 
naturally keep their E8 values, which we could make small. Already this looks 
troublesome because one can reiterate this pattern along the whole sequence of 
intermediate gauge groups, finally leading to a disastrous phenomenology. We 
emphasise that this is not a consequence of choosing E8, but a property of any theory 
where all fermions are in the same representation as the gauge bosons. 

Our only hope to combat the ‘survival hypothesis’ is that one may obtain massless 
fermions from the Yukawa couplings in ( l ) ,  in the following ways. 

(i) The diagonalised spinor mass matrix (OIA,l(a,),b + B , ( P , ) a b ( O )  could have 
‘accidental’ zero eigenvalues. 

(i i)  One may cancel mass terms in (i) against explicit spinor masses coming from 
the insertion of soft terms. 

In N = 4 SYM (i) cannot yield zero modes in any other representation of H (the 
surviving gauge group) than the adjoint. This can be seen by taking the case where 
(A,) # 0 only (this is quite general because even if (B,) # 0, no cancellation with (A,) 
can take place since X A  and IySA are independent), and realising that since g2(A’A,) 
is the mass matrix of gauge bosons, its zero modes characterise the gauge bosons of 
H (all group indices implicit). So, the zero eigenvalues of (A’A,), which must be 
solutions of 

det(g2(A’A,) - M t )  = 0 

are precisely the solutions of det(g(A’) * M A )  = 0 where g(A’) is the fermion mass 
matrix in ‘group space’. Moreover since the ‘generation’ space part (a’)& of this mass 
matrix is antisymmetric, 4 x 4  and real, all its eigenvalues are non-zero. Hence the 
zero modes of (A’(a#)) characterise fermions in the adjoint representation of H. 

Thus we will employ (ii) to fine tune massless fermions in representations R,, of 
H, other than the adjoint. Choosing a convenient representation for the generators 
(a1)& and taking M I , .  . . , M4 as the explicit spinor masses, we find that there are 
three massless modes in generation space if 

q(  P - ) ~ -  ( p’) ’ [ (  M ’ +  M 2 ) ( M 3  + M4) + M ’ M 2 +  M3M4]+ M’M2M3M4=0 
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Mi 3(p-)2-M1M2(M3+M4)-(MI+M2)M3M4=0 1 (4) 

M'M2 + M ' (  M3 + M4) - 3(  p ' ) ,  = 0. 

In equation (4) p ' =  (g /2) l [ (Ai ) l lN,  for i =  1 ,  2, 3, with N,  a group factor depending 
on the particular representation R,. Since we might expect p' to be a function of the 
mass scales introduced by the soft terms, equation (4) puts further constraints on these 
parameters. 

If the adjoint of E8 decomposes as 

then we can have at most 3 x ( R ! )  (for fixed a) of massless fermions. In ( 5 ) ,  H refers 
to H the little group of ( A ' )  and a runs over representations other than the adjoint. 
The reason why only in one representation RY can such cancellations take place, is 
because of the dependence of p' on R,. The scalar potential plus soft terms [3,4] is 
given by 

V( d'it B i )  = TrI% d ' i ,  4 j ) & i j k I 2 g 2  +i\(d'i ,  i' )&ijk\'g2 

+ [ vrjk(4i4j4k) + P{k$i4j4k + HC] 

+$(kf;i4i$+ Ni,(bi@+HC)} 

where in equation (6) 

P" = 2gi M,le bk M I  = diag(Ml, M2,  MA. 
The requirement that V( 4,, 6') be bounded from below implies 

( M i  - N2,) > 0. (8) 
The inequality (8) forbids any of the fields ( A l ,  B,) from having a negative (mass),, 
and so gauge breaking has to be driven by the cubic interactions in ( 6 ) .  We will take 
both A2 and B2 masses to be >O, so that V does not have any 'degenerate' minima. 
The first stage of breaking will be E8 to E, via the maximal subgroup E, x SU2. Under 
this the decomposition of the adjoint of E8 is 

248+ ( 1 3 3 , 1 ) 0 ( 5 6 , 2 ) 0 ( 1 , 3 ) .  (9) 

From (9) we see that there are no singlets under E7 x SU,; however, the ( 1 , 3 )  irrep 
preserves E7, and we will use this to break E8. To derive the potential involving (1 ,3)  
scalar fields requires the decomposition of the Es structure constants fABc with respect 
to Es x SU2-which can be obtained by decomposing the E8 algebra (see [ 11) .  Since 
we envisage E7 singlets only, as picking up a non-zero VEV at this stage, it is sufficient 
to study the potential involving only these fields. This is given by 

(10) V($J:, 6") =equation (6) withfABC replaced by srSp 

In (10) r = 1-3 labels the adjoint of SU,. At this point we note that for the extrema 
equations 

SV/Sqb' = SV/S$' = o  ( 1 1 )  
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to have solutions in which the vacuum expectation value (4') is non-zero requires that 

141, 4kl l ex tremaf  (12) 

which means that we cannot diagonalise the fields (regarded as a matrix). Returning 
to the E8+ E7 breaking, we see that it is natural that the fields align themselves in 
the three 'perpendicular' directions of the SU2 adjoint (1,3). (By 'perpendicular' 
we mean non-commuting.) Exploiting the local SU2 invariance and demanding 
real solutions to (1 1) we find 

(13) (Re 4:I:) = (Re 4:::) =(Re 4:::) = p 

satisfies (1 1) and (12) if 
M2V + N 2 l J  = M:SII (14) 

and p satisfies 

g2p2 -4gpp + i M :  = 0 

where in equation (1 5) p = ( M 2  + M3 - M4 - MI), and the reality of p implies M :  < 8p2. 
We note that condition (14) fixes two of the nine soft parameters. 

One may check that (15) is sufficient to give masses of order p2 to gauge bosons 
in (56,2) and (1,3) irreps in (9), leaving a theory invariant under E7. To show that 
the solution (13) is a minimum of V, one has to check the positivity of all scalar (mass)2 
after breaking occurs. From (6) we can derive the general formulae for A2 and B' masses: 

where V'"  = SV/Sq5,,, VI, = SV/SC$'~ and in (16) and (17) a = 1 -dim RZ labels the 
R, representation of some subgroup H of E8. The RHS of (16) and (17) is 

( N 2 "  i M2'I)SuP +4iP;r(4A')f~P+2i77VkfaPA4Ak 

* 4i( py4 rf;;, + pjk4 'vf, + 3 7 "kfiP 42") 
+1 4g 2 f AUY 4yk&'*k&lp l fPAu4*uP * i g 2 ( 2 f  A P E 4 F k ~ " k & l p ~ f A B a 4 p B  

+ f ~ P & ' u & l p q f A B c ~ * B p ~ c 4  +f$' 4Fk&p'kElpj fAuc4CP) .  (18) 
In (18), (i) refers to the A2 and 8' masses, respectively. For the particular case where 
H = E7 x SU2, the decomposition of f A B c  with respect to H, is given in [l]. Since the 
(1,3) scalars do not couple to those in (133, l), the latter all have positive (mass)' by 
virtue of (8). We find that positivity of (mass)2 in the rest of the spectrum is not 
difficult to arrange, as long as the explicit scalar and spinor masses are of the same 
order of magnitude (which is natural, since finiteness imposes STr(mass)' = 0). As we 
shall see, in the breaking to SOlo we will not require explicit expressions for these 
masses. 

Turning to the fermion mass corrections from (( 1,3)) we have the following Yukawa 
couplings: 

(1,3), t .0[(56,2)~0(56,2){0(1,3)~0(1,3){1.  (19) 

In (19) the f refers to fermion representations. The details of the generation space 
and group representation indices are left out of (19). They can be obtained from the 
Lagrangian (1) by again making use of the decomposed structure constants f A B C .  
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Earlier it was explained how it is natural to expect the fermions in the (133 , l )  
representation not to receive mass corrections from the (1,3) Higgs fields (which is 
not apparent in (19)) but that the other fermions would require one to fine tune 
parameters in V in order that they receive no mass corrections. If we demanded 
that equations (4) hold we could get massless fermions in the 56 representations of 
E7, but we should not expect them to remain so after further gauge breaking. Neither 
could one hope to cancel these further mass corrections, as they will be hierarchically 
larger than the O(M,) diagonal fermion masses obtained at E7. We will therefore 
postpone imposing (4) until SO,, is reached, which will be the limit of E8 breaking 
considered in this paper. 

Having reached E, we will now break to SO,,, via the E6 subgroup. Although it 
is possible that one could induce an E6 invariant minimum of V ,  we will consider the 
direct breaking of E, to SO,, without any intermediate stages. Decomposing E7 irteps 
with respect to E6 and then SO,, we have 

E7 E6XUI 
133 (78,0)@(27, - f ) @ ( T , f ) @ ( l , O )  

56 ( 2 7 , f ) @ ( U ,  - ; ) @ ( I ,  I ) @ ( l ,  - 1 )  
(20) 

E6 solo x 6, 
27 ( i o , t ) @ ( i 6 , d ) @ ( i ,  i) 
78 (45,0)@(16, - i ) @ ( Z , i ) @ ( l , 6 ) .  

In (20) there are a number of SOlo singlets, distinguished by their f i , x U , x S U $  
quantum numbers, where SU," is the broken SU, group factor of E7 x SU2. We label 
them 

[ 1,6,0,  1 1  3 3 [ I ,  i, - ; , 1 ] =  P I  

[ 1, 7,  - f ,  21 P [ 1,6,1,2]  T (21) 

[ 1 , 6 , 0 , 1 ] = S  

where in (21), P and T are SU, doublets, while P' is complex. s' and S are simply 
the 6, and U, generators. 

Each of the E8 fields 4; contains the singlets (21) but we may invoke a 6, x U,  
transformation to rotate these SO,, singlets into a particular 'direction'. Since [ 4i, 4j] # 
0 in general, this rotation will have the effect of making these directions perpendicular 
for each value of i, and then we are guaranteed a global non-zero VEV by equation ( 1  1 ) .  

A judicious choice of fi, x U,  rotation would be 

Re 4f=, + PI Re 4f=, + P' Re 4f=3+ s' (22) 

where 4; are the SO,, singlet fields in di, because then only scalars in the 133 
representation of E7 pick up VEV. Previously we noted that the Higgs field that broke 
E8+ E7 did not couple to scalars in this representation, and so the task of minimising 
the potential of SO,, singlets (20) is considerably simplified. The relevant part of the 
scalar potential involving the fields in (22) is given by 

4 M:( s" + Ip112) - 4 g ~ " & l J ~ ( s ' ~ ~ j  + cycle on ijk) 

+ f g M 4 E  "s';p,' p:' + t g'( 1 g;pj & jj'kl2 + I p ;  P;'& q 2 )  (23) 

where in (23) gi, P;, P c  refer to Re 4i in the s', P ' ,  P' irreps of (21) respectively. To 
obtain (23) one has to decompose the E8 algebra with respect to SOlo x 6, x U1 x SU2 
and find the commutation relations among the generators of (21). 
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Among the solutions of the extrema equations derived from (23) and which also 
satisfy the full E8 extrema equations one finds 

Re(4:=,) = Re(4f=,) = ( l / ~ ) M , ( 2 ~ ~ / M : - ~ g * ) - ” ~  
(24) 

= a(2a2/M:-ig2)-’ 

the rest of the fields vanishing. 
In (24) a = 4g2( M’ - M 2 +  M 3  + 2M4). The interesting thing about the VEV in (24) 

is that one cannot have 11 4; 11 << scale of E8 breaking because for this to happen a /  M i  >> 1 .  
But for the soft terms to maintain the finiteness of N = 4 SYM, STr(mass)2 must vanish. 
This implies that the largest positive (mass) from the scalar sector, M:,  must be of 
the same order as a’. So E8 and E7 breaking occur at roughly the same energy scale. 
This close proximity of E7 and SOlo invariant extrema makes the calculation of stability 
in the latter complicated, because of effects from the former. Nevertheless one can 
show that stability occurs, by using STr(mass)2 = 0 to fix the ratios of highest explicit 
fermion to scalar masses. The only real constraints one has to impose are that 
corrections to the explicit scalar masses due to E8+ E7 breaking do not change their 
order of magnitude, i.e. no accidental fine tuning must occur, and p B M+/g which 
is easily achieved in equation (15) .  Moreover one can maintain stability in both stages 
of breaking simultaneously. However, due to the close proximity in scales of breaking, 
it may be that stability in the latter stage is what one desires. 

We may now study the Yukawa couplings involving the scalars (22). Since we 
have our eye on obtaining light or massless generations of fermions in the 16+16 
irreps of SOlo, it will be sufficient to study only those couplings involving these fields. 

From (20) we see that each 248 of E8 gives rise to four 16+% representations of 
SOlo, two from the (56,2) and two from 133 when viewed from E7. They are 
distinguished from each other by 6, x U1 x SU2 quantum numbers. Denote the ‘16’ 
fermions from the (56,2) representations by GF), and from the 133 by (Gla ,  GZb) 
where representation indices are suppressed. The Yukawa couplings of G are 

(i)ab{GL2)@ Gb2’@ GIa@ GI,@ G2a@ G2b}+ ((PI)&{ cia @ G2b} HC). ( 2 5 )  

Because the mixing of GI,, GZb is complicated in (25), it is easier to try and obtain 
light fermions in Gg’, which only couples to (s’),,. Remembering that these fermions 
also have an explicit mass matrix (corrected by E,+E7 breaking), Mab = 
diag(M{, . . . , M i ) ,  we find on computing the determinant of the mass matrix of GY’ 
in equation (25), that for two values of a, one can fine tune the mass away if 

M ; M ; =  M ; M ; =  I(g/Z)(S)I2. (26) 
In equation (26), M :  = M ,  +corrections O( p ) .  The reason why this only happens for 
at most two and not three values of a (as stated in equation ( 5 ) )  is because in the 
latter case we assumed that the VEV of the Higgs scalar Ai was in all three ‘directions’ 
of i. But now from (24) s’ is seen to be non-zero in the i = 3 direction only, and this 
reduces the number of modes we can fine tune to be massless. 

Therefore, because the Gb2’ are doublets under the SU, factor of E7 x SU,, we have 
the result that 4 x  1 6 + G  massless fermions emerge at SOlo. We remark that using 
(24), equation (26) is a complicated constraint on the soft parameters ( M : ,  Mab) 
which, along with the vanishing of STr(mass)’, implies that of the nine initial para- 
meters, five independent ones remain at SOlo. Therefore it should not be difficult to 
satisfy (26), and moreover this constraint does not affect the stability of the SO,,, 
invariant minimum. The details of the O( p )  corrections to Mab for various fermionic 
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fields can be obtained from the determinant of the corresponding mass matrix after 
E*+ET. 

3. Discussion 

We have seen that, because of the severe constraint on the group representation content 
of N = 4 SYM, the only way to obtain a light sector of fermions that correspond to 
conventional SO,, families is to fine tune the soft parameters (which are O ( a M , ) )  in 
the theory. This situation seems less attractive than ordinary SUS or SO,, grand unified 
theories, where the choice of fermionic representations prevents the future quarks and 
leptons from appearing in Yukawa terms involving the Higgs fields that have VEV 

O ( M J  (Mu is the unification mass). 
Neither can we avoid this fine tuning by explicitly breaking N = 4 supersymmetry 

at low energies, i.e. by taking soft parameters to be of O(M,) because, although this 
would seem a more natural choice, it leads to a disastrous phenomenology if the scalars 
in the theory are taken to form a Higgs sector. This is because if N = 4 SYM with a 
grand unified group G spontaneously breaks to G, say, at an energy scale Mu, with at 
least one supersymmetry remaining, then light (0( M,)) fermions are degenerate with 
scalars lying in the same representations of G and having the same mass. Since these 
scalars are Higgs fields, then if their superpartners are charge - f  quarks, they will 
generate too rapid a proton decay [9]. It is precisely the choice of separate Higgs and 
matter supermultiplets in N = 1 super GUT that avoids this danger, for then one can 
arrange for the supermultiplets containing the coloured Higgs scalars to acquire a mass 

One might also comment that the only light sector emerging from E8 breaking 
(apart from gauge bosons) are the 16 + i6 families of SO,, . Clearly, further fine tuning 
is necessary if a Higgs sector is also to emerge which could then further break SOlo. 
Again this situation seems forced upon us by the constraints of N = 4 SYM. 

One might have hoped that the class of finite broken N = 2 theories [7 ,8] ,  being 
less restricted in their representation content, could provide a more natural framework 
for a realistic finite model. However recent work [I31 suggests that Higgs sector 
breaking may have to be ruled out for a large class of gauge groups on phenomenological 
grounds. Thus the relevance of known finite field theories in realistic models still 
seems uncertain. 

O(MU). 
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